
TERENCE TAO’S ”AN EPSILON OF ROOM”
CHAPTER 4 EXERCISES

KELLER VANDEBOGERT

1. Exercise 1.4.1

Assume first that 〈Tx, Ty〉 = 〈x, y〉. Then,

||Tx||2 = ||x||2 =⇒ ||Tx|| = ||x||

So T is an isometry.

Conversely, suppose that T is an isometry. In the complex case,

employ the polarization identities to see

〈Tx, Ty〉 =
1

4

(
| Tx+ Ty||2 − ||Tx− Ty||2 + i||Tx+ iTy||2 − i||Tx− iTy||2

)
=

1

4

(
||x+ y||2 − ||x− y||2 + i||x+ iy||2 − i||x− iy||2

)
= 〈x, y〉

So that 〈Tx, Ty〉 = 〈x, y〉. In the real case, the polarization identities

are even simpler:

〈Tx, Ty〉 =
1

4

(
| Tx+ Ty||2 − ||Tx− Ty||2

)
=

1

4

(
||x+ y||2 − ||x− y||2

)
= 〈x, y〉

Which gives the result.
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2. Exercise 1.4.2

Note that (
〈xi, xj〉

)t
=
(
〈xj, xi〉

)
=
(
〈xi, xj〉

)
So this matrix is Hermitian. Let X := (x1 x2 . . . xn), the xi are our

column vectors. It is trivial that

X
t
X =

(
〈xi, xj〉

)
which is our Gram matrix. For any nonzero v, Xv 6= 0 whenever the

xi are linearly independent. Thus,

vtX
t
Xv = Xv

t
Xv

= 〈Xv,Xv〉

= ||Xv||2 > 0

If we suppose that xi are linearly dependent, then X has nontrivial

kernel. Choose v ∈ KerX, so that

vtX
t
Xv = Xv

t
Xv = 0

So the matrix is positive semidefinite.

3. Exercise 1.4.3

By induction, with base case n = 2:

||x1 + x2||2 = ||x1||2 + 2Re〈x1, x2〉+ ||x2||2

= ||x1||2 + ||x2||2

Now assume n > 2, where the inductive hypothesis holds for all integers

less than n. It is obvious that if our vectors xi are orthogonal, in
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particular, xn and x1 + · · ·+ xn−1 are orthogonal. Using this:

||x1 + x2 + · · ·+ xn−1 + xn||2 = ||x1 + · · ·+ xn−1||2 + 2Re〈x1 + · · ·+ xn−1, xn〉+ ||xn||2

= ||x1 + · · ·+ xn−1||2 + ||xn||2

= ||x1||2 + ||x2||2 + · · ·+ ||xn||2

Whence the result.

4. Exercise 1.4.4

Let {eα}α∈A denote our orthonormal basis. Suppose we have a linear

combination with constants cα such that

c1x1 + . . . cnxn = 0

Taking the inner product in the above with each ei, we immediately

deduce that ci = 0 for all i, so this set is linearly independent. Given

any x, there exist constants ci such that

x =
n∑
i=1

ciei

Again, taking the inner product in the above with each of the ei, we

find that

〈x, ei〉 = ci

Implying

x =
n∑
i=1

〈x, ei〉ei

as asserted.

5. Problem 1.4.5

Assume (xi)
n
i=1 is orthonormal. Set

xn+1 := v −
n∑
i=1

〈v, xi〉xi
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Clearly xn+1 ∈ Span{x1, . . . , xn, v}, so that

Span{x1, . . . , xn, v} = Span{x1, . . . , xn, xn+1}

And we also see for each j 6 n,

〈xn+1, xj〉 = 〈v, xj〉 −
n∑
i=1

〈v, xi〉〈xi, xj〉

= 〈v, xj〉 − 〈v, xj〉 = 0

So we have produced a larger orthonormal set (upon normalizing xn+1

as needed). Hence given any basis {b1, . . . , bn}, we can produce an

orthonormal basis {x1, . . . , xn} by setting b1 = x1, and then inductively

defining our xi by the above process. By construction,

Span{b1, . . . , bn} = Span{x1, . . . , xn}

So this is indeed a basis.

6. Exercise 1.4.6

For the parallelogram law,

||x+ y||2 + ||x− y||2 = ||x||2 + 2〈x, y〉+ ||y||2 + ||x||2 − 2〈x, y〉+ ||y||2

= 2||x||2 + 2||y||2

Suppose now that p 6= 2. Choose disjoint measurable sets E1, E2.

Then,

||χE1 + χE2||2p + ||χE1 − χE2 ||2p = 2
(
µ(E1) + µ(E2)

)2/p

6= 2µ(E1)2/p + 2µ(E2)2/p

= 2||χE1||2p + ||χE2||2/pp

So the parallelogram law does not hold for p 6= 2. Now, in order to prove

the Hanner inequalities, we may assume without loss of generality that

||f ||p = 1 and ||g||p < 1 by homogeneity. Using the inequality supplied
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by the hint, we may assume f, g > 0 by splitting into positive/negative

parts of course. We see:

|f + g|p + |f − g|p >
(

(1 + ||g||p)p−1 + (1− ||g||p)p−1
)
· fp

+
(

(1 + ||g||p)p−1 − (1− ||g||p)p−1
)
· ||g||1−pp gp

Integrating the above yields

||f + g||pp + ||f − g||pp >
(

(1 + ||g||p)p−1 + (1− ||g||p)p−1
)

+
(

(1 + ||g||p)p−1 − (1− ||g||p)p−1
)
· ||g||p

= (1 + ||g||p)p + (1− ||g||p)p

Which establishes the first inequality. For the second inequality, we

want to employ the above. Putting f 7→ f + g, g 7→ f − g, the first

inequality yields(
||f + g||p + ||f − g||p

)p
+
∣∣||f + g||p − ||f − g||p

∣∣p 6 ||2f ||pp + || − 2g||2p

= 2p
(
||f ||pp + ||g||2p

)
Which yields the result.

7. Exercise 1.4.7

A subspace of a Hilbert space is a Hilbert space if and only if it

contains all of its limit points, since the rest of the structure is inherited

by the ambient space. But a subspace is closed if and only if it contains

all of its limit points, so the result follows trivially.

8. Exercise 1.4.8

We define the completion by the union of V with all limits of Cauchy

sequences in V . By continuity of inner products, it is well defined to

set

〈x, y〉 := lim
n→∞
〈xn, yn〉, xn → x, yn → y
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This space is trivially complete by construction, so we are done.

9. Exercise 1.4.9

The vector space structure and completeness are both obvious. It

remains only to show the inner product properties. One sees:

〈(x, x′), (y, y′)〉H⊕H′ = 〈x, y〉H + 〈x′, y′〉H′

= 〈y, x〉H + 〈x′, y′〉H′

= 〈(x, x′), (y, y′)〉H⊕H′

Conjugate linearity and linearity are trivial. Also,

〈(x, x′), (x, x′)〉H⊕H′ = 〈x, x〉H + 〈x′, x′〉H′

= ||x||2H + ||x′||2H′

= 0 ⇐⇒ x, x′ = 0

⇐⇒ (x, x′) = 0

Which proves nondegeneracy.

10. Exercise 1.4.10

Consider B := {x : ||x|| < 1} in R2. Then, no point outside of B has

a minimizer, and B is open. Now consider

B1 := {x | ||x|| 6 1}, B2 := {x | ||x− (4, 0)|| 6 1}

Then B1 ∪B2 is closed but not convex. Consider then the point (2, 0).

The minimum distance from B1 ∪B2 is 1, achieved by the points (1, 0)

and (3, 0), so these minimizers are not unique.

For the case of a pre-Hilbert space, consider C([0, 1]) ⊂ L2([0, 1]).

SetK to be the continuous functions supported on [0, 1/2], and consider

the distance of χ[0,1] from K. It is easy to see that d(χ[0,1], K) = 1√
2
,
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and is achieved by the sequence of functions

η1/n ∗ χ[0,1/2]

As n→∞, where ηε denotes the standard mollifier and ∗ the operation

of convolution. Noting that [0, 1/2] is a compact set, η1/n ∗ χ[0,1/2] →

χ[0,1/2] uniformly, but this limit is not contained in C([0, 1]).

Suppose now that K is compact, and define D := infy∈K ||x − y||.

Choose a sequence yn such that limn→∞ ||x−yn|| = D. By compactness,

yn has a convergent subsequence ynk → y. Since K is closed, y ∈ K,

so the minimizer exists.

11. Exercise 1.4.11

The case p = 2 is already solved. Suppose first that p > 2. Choosing

a sequence yn such that ||yn − x|| → D, Hanner’s inequality yields

(yn ∈ K, K closed/compact):

||2
(
x− yn + ym

2

)
||pp + ||yn − ym||pp 6

(
||yn − x||p + ||ym − x||p

)p
+
(
||yn − x||p − ||ym − x||p

)p
Letting m, n→∞, we see:

lim
m, n→∞

||yn − ym||pp 6 2pD + (D −D)p − 2pDp

= 0

So that our sequence is Cauchy, hence convergent to some limit yn →

y ∈ K.

Now consider the case p ∈ (1, 2). Hanner’s inequalities are reversed

in this case, and without loss of generality we may assume that x = 0.

Again, choose yn such that ||yn||p → D, our minimizing distance. We
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see: (
||yn + ym||p + ||yn − ym||p

)p
+
(
||yn + ym||p − ||yn − ym||p

)p
6 2p

(
||yn||pp + ||ym||pp

)
By convexity of K, ||yn+ym||p → 2D. Suppose for sake of contradiction

that there exists from ε > 0 such that ||yn − ym||p → ε. Letting

m, n→∞, the above inequality gives

|2D + ε|p + |2D − ε|p 6 2pDp + 2pDp

However, if f(x) := |2D + x|p, f is strictly convex, since p > 1. But

the above says that

1

2
f(ε) +

1

2
f(−ε) 6 f(0)

whereas the reverse inequality holds by convexity of f . Hence, we

deduce
1

2
f(ε) +

1

2
f(−ε) = f(0)

By strict convexity, this is possible if and only if ε = 0. Hence, yn

is Cauchy and must converge to some minimizer yn → y ∈ K. This

completes the proof.

12. Exercise 1.4.12

Let {x1, . . . , xn} be an orthonormal basis of V . Define xV :=
∑n

i=1〈x, xi〉xi.

Setting xV ⊥ := x− xV , we see that

〈xV ⊥ , xi〉 = 〈x, xi〉 − 〈xV , xi〉

= 〈x, xi〉 − 〈x, xi〉 = 0

So that xV ⊥ is orthogonal to every element of V . To see that xV

minimizes distances, notice that for any y ∈ V :

x− y = x− xV + xV − y

=⇒ ||x− y||2 = ||x− xV ||2 + ||y − xV ||2 > ||x− xV ||2
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So that xV is indeed our minimizer.

13. Exercise 1.4.13

(a). Note first that 〈·, v〉 is a continuous functional. This follows by

the Cauchy=Schwarz inequality. Hence,

V ⊥ =
⋂
v∈V

f−1
v ({0})

where fv(x) := 〈v, x〉. By continuity, f−1
v ({0}) is closed, and V ⊥ is the

intersection of closed sets, hence closed.

We proceed to show V =
(
V ⊥
)⊥

. Since V ⊂
(
V ⊥
)⊥

, we trivially

have that V ⊂
(
V ⊥
)⊥

.

For the reverse inclusion, suppose for sake of contradiction that the

above containment is proper. Since V is closed, V
⊥

is nontrivial.

Choose v ∈ V ⊥, and observe that V
⊥ ⊂ V ⊥ (since V ⊂ V ).

But this implies that v ∈ V ⊥, and v ∈
(
V ⊥
)⊥

, so

v ∈ V ⊥ ∩
(
V ⊥
)⊥

= {0}

=⇒ v = 0

Contradicting our assumption. We conclude that V =
(
V ⊥
)⊥

.

(b). If V ⊥ = {0}, then by part (a), V =
(
V ⊥
)⊥

= H, so that V is

dense.

Conversely, if V is dense, V = H =⇒ V
⊥

= {0}. But it is obvious

that V
⊥

= V ⊥ = V ⊥ since V ⊥ is closed. Therefore V ⊥ = {0}.

(c). By Exercise 1.4.12, we can decompose x = xV +xV ⊥ . Then, clearly

H = V + V ⊥. As V ∩ V ⊥ = {0}, we conclude that H = V ⊕ V ⊥.
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(d). Let x ∈ (V + W )⊥. Then, 〈v + w, x〉 = 0 for all v ∈ V , w ∈ W .

Setting v = 0, we see 〈w, x〉 = 0 for all w ∈ W , and similarly, 〈v, x〉 = 0

for all v ∈ V , so that x ∈ V ⊥ ∩W⊥.

Conversely, if x ∈ V ⊥ ∩W⊥, then for all v ∈ V , w ∈ W ,

〈v + w, x〉 = 〈v, x〉+ 〈w, x〉 = 0

So x ∈ (V +W )⊥.

Now, recalling that V
⊥

= V ⊥, and likewise for W , we see

(V ⊥ +W⊥)⊥ = V ∩W

=⇒ (V ⊥ +W⊥) = V
⊥ ∩W⊥

= V ⊥ ∩W⊥

Whence the result.

14. Exercise 1.4.14

Set K = Ker(λ). This is closed by continuity and trivially convex.

If λ ≡ 0, the result is obvious, so suppose λ 6≡ 0 and choose f /∈ K.

We can find h ∈ K such that ||f −h||p is minimized by Exercise 1.4.11.

Set u := |f − h|p−2(f − g). For any k ∈ K, we have that

Re
(ˆ

X

ukdµ
)
6 0

However, by linearity, k ∈ K =⇒ −k, ik ∈ K, so we can substitute

those in the above inequality to find that
´
X
ukdµ = 0 precisely. We

also see

||u||p
′

p′ =

ˆ
X

(
|f − h|p−2|f − h|

) p
p−1dµ

=

ˆ
X

|f − h|pdµ

= ||f − h||pp <∞
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Thus u ∈ Lp′ , since f, h ∈ Lp. Let g ∈ Lp. Now, decompose g = g1+g2

where

g1 :=
λ(g)

λ(f)
(f − h), g2 := g − g1

Note that

λ(g2) = λ(g)− λ(g) = 0

This implies that g2 ∈ K, so that we seeˆ
X

gudµ =

ˆ
X

g1udµ

=
λ(g)

λ(f)

ˆ
X

(f − h)|f − h|p−2|f − h)dµ

=
λ(g)

λ(f)

ˆ
X

|f − h|pdµ

= λ(g)
||f − h||pp
λ(f)

Since f /∈ K, we know ||f − h||p 6= 0, so we may define φ := u·λ(f)
||f−h||pp

Then φ ∈ Lp′ , and, by construction,

λ = λφ

Which proves the result.

15. Exercise 1.4.15

Let {e1, . . . } denote our orthonormal basis. Define λ(x) := 〈Tx, ei〉.

We see that

|λ(x)| 6 ||T || · ||x||

So λ is bounded, hence continuous. By the Riesz Representation the-

orem, there exist vi ∈ H such that

λ(x) = 〈x, vi〉
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Define T ∗ei := vi and extend by linearity. This uniquely defines an

operator T ∗ : H ′ → H. Note that

〈x, T ∗y〉 = 〈Tx, y〉 6 ||Tx|| · ||y||

So that T ∗ is continuous. For linearity,

〈x, T ∗(cy + z)〉 = 〈Tx, cy + z〉

= c〈x, T ∗y〉+ 〈x, T ∗z〉

= 〈x, cT ∗y + T ∗z〉

Completing the proof.

16. Exercise 1.4.16

(a). Note that for x ∈ H, y ∈ H ′,

〈Tx, y〉 = 〈x, T ∗y〉

= 〈T ∗∗x, y〉

As x and y are arbitrary, we see that T = T ∗∗.

(b). Recall that T is an isometry if and only if 〈Tx, Ty〉 = 〈x, y〉. By

definition of adjoint,

〈Tx, Ty〉 = 〈x, T ∗Ty〉

and we conclude that T is an isometry if and only if y = T ∗Ty for all

y, that is T ∗T ≡ idH .

(c). Suppose first that T ∗T = idH , TT ∗ = idH′ . Then T is a right

invertible isometry, hence an isomorphism.

Conversely, let T be an isomorphism. Then T is an isometry, so by

the previous part, T ∗T = idH . By surjectivity, for any x′ ∈ H ′, we can
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find x ∈ H such that Tx = x′. Given x′, y′ ∈ H ′:
〈x′, y′〉 = 〈Tx, y′〉

= 〈x, T ∗y′〉

= 〈Tx, TT ∗y′〉

= 〈x′, TT ∗y′〉
From which we conclude that TT ∗ = idH′ , as asserted.

(d). One one hand, we see

〈TSx, y〉 = 〈x, (TS)∗y〉

On the other,

〈TSx, y〉 = 〈Sx, T ∗y〉

= 〈x, S∗T ∗y〉
So that (TS)∗ = S∗T ∗.

17. Exercise 1.4.17

Recall that any x ∈ H can be uniquely written as x = xV + xV ⊥ .

Then, one notes that πV (x) = xV . Hence,

〈πV (x), y〉 = 〈xV , y〉

= 〈xV + xV ⊥ , y〉 = 〈x, y〉
So that the adjoint of πV is precisely the inclusion.

18. Exercise 1.4.18

(i). Note first that

||
N∑
i=1

cnen|| converges ⇐⇒ ||
N∑
i=1

cnen||2 converges

But

||
N∑
i=1

cnen||2 =
N∑
i=1

|cn|2
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Letting N →∞, we see that
∑∞

i=1 |cn|2 must converge.

(ii). Let ε > 0. There exists N such that
∑∞

n=N ′ |cn|2 < ε2 for all

N ′ > N . Let S :=
∑∞

n=1 cσ(n)eσ(n) be a rearrangement of our sum, and

set M := max{σ(1), . . . , σ(N)}. Then, using part (i), we see that for

all M ′ >M :

||S −
M ′∑
m=1

cσ(m)eσ(m) = ||
∑
m>M ′

cσ(m)eσ(m)||

=
( ∑
m>M ′

|cσ(m)|2
)1/2

6
(∑
n>N

|cn|2
)1/2

< ε

Hence,
∑∞

n=1 cσ(n)eσ(n) converges to the same value.

(iii). We see that, given (an), (bn) ∈ `2(N):

〈
∞∑
n=1

anen,
∞∑
n=1

bnen〉 =
∞∑
n=1

〈anen, bnen〉

=
∞∑
n=1

anbn〈en, en〉

=
∞∑
n=1

anbn

= 〈(an), (bn)〉

(iv). As already shown, the adjoint of the inclusion is just πV . Let

x ∈ H. Then,

〈x,
∞∑
n=1

cnen〉 =
∞∑
n=1

cn〈x, en〉

=
∞∑
n=1

cn〈x, en〉〈en, en〉

= 〈
∞∑
n=1

〈x, en〉en,
∞∑
n=1

cnen〉
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So that

πV (x) =
∞∑
n=1

〈x, en〉en

From part (i), we easily see that

||πV (x)||2 =
∞∑
n=1

|〈x, en〉|2

=⇒ ||πV (x)|| =
( ∞∑
n=1

|〈x, en〉|2
)1/2

And, as ||πV (x)|| 6 ||x|| (by orthogonal decomposition), we see

∞∑
n=1

|〈x, en〉|2 6 ||x||2

Which completes the proof.

19. Exercise 1.4.19

(i) =⇒ (ii): Suppose (eα)α∈A gives all of H. Then, given ε > 0 and

x ∈ H, we can find N ∈ N such that

||x−
N∑
n=1

cnen|| < ε

Implying that finite linear combinations are dense.

(ii) =⇒ (iii): By Bessel’s inequality,∑
α∈A

|〈x, eα〉|2 6 ||x||2

Note, however, that if V denotes our space of finite linear combinations,

V = H =⇒ V ⊥ = {0}. Every vector can be decomposed as x =

xV + xV ⊥ , where xV ⊥ xV ⊥ . However, this implies that xV ⊥ = 0, so

that

||x|| = ||xV || =⇒
∑
α∈A

|〈x, eα〉|2 = ||x||2
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(iii) =⇒ (iv): We see that the 〈x, eα〉 are square summable. By

Exercise 1.4.18, part (ii), ∑
α∈A

〈x, eα〉eα

converges unconditionally to x.

(iv) =⇒ (v): Suppose that x =
∑

α∈A〈x, eα〉eα for all x ∈ H. If

〈v, eα〉 = 0 for all α ∈ A, then

〈x, v〉 = 0 for all x ∈ H ⇐⇒ v = 0

(v) =⇒ (vi): The isomorphism `2(A)→ H is precisely the identifi-

cation

(cα)α∈A 7→
∑
α∈A

cαeα

This has already been shown as an isometry, so it merely remains to

prove surjectivity. Letting V denote our formal span, we have that

V ⊥ = {0} so that V = H. But V is a closed set, so in fact V = H.

One immediately notes that V is precisely the image of our isometry,

so surjectivity follows immediately.

(vi) =⇒ (i): Let T denote our isomorphism. Givne x ∈ H, x is

the image of some (cα)α∈A ∈ `2(A). If the δα denote our standard unit

basis vectors, we may rewrite

(cα)α∈A =
∑
α∈A

cα(δα)α∈A

=⇒ T (cα)α∈A =
∑
α∈A

cαeα (Linearity)

But, T (cα) = x, so that in fact,

x =
∑
α∈A

cαeα

Which shows that our Hilbert space span is all of H.
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20. Exercise 1.4.20

If V is empty, we are done. Assume V 6= ∅. Every singleton set

is linearly independent, so order the family of linearly independent

sets by inclusion. Given any chain S1 ⊂ S2 ⊂ . . . , we have the trivial

upper bound
⋃
λ∈Λ Sλ. Applying Zorn’s Lemma, there exists a maximal

linearly independent subset S. It remains to show that Span(S) = V .

Suppose then that Span(S) 6= V . We can choose v ∈ V \Span(S),

which implies that the set S ∪ {v} is a linearly independent set that

strictly contains S. This contradicts maximality of S, so we conclude

that

Span(S) = V

21. Exercise 1.4.21

We can assume that A and B are infinite, since the finite case uses

the exact same technique without employing the Bernstein Schöder

theorem. Let {vα}α∈A and {uβ}β∈B be bases for `2(A) and `2(B),

respectively. Then, for each α ∈ A, there exists a finite subset Bα ⊂ B

such that Tvα ∈ Span{uβ}β∈Bα . This gives that

Span{Tvα}α∈A ⊂ Span{uβ}β∈⋃α∈ABα
So that |A| 6 |B|. However, the same argument applied to {T−1uβ}β∈B
shows that |B| 6 |A|. Applying the Bernstein Schröder theorem, we

conclude that |A| = |B|.

The converse is trivial, as we merely relabel our indices based off of

the provided bijection f : A→ B.
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22. Exercise 1.4.22

Every basis of a vector space must have the same cardinality, since

one can see that if Span(A) = Span(B) for two linearly independent

sets A, B, that |A| = |B|.

To see this, let {vi}i∈I , {uj}j∈J be two bases. For each i, there is a

finite subset Ji ⊂ Ji such that

vi ∈ Span{uj}j∈Ji

Then, we see

Span{vi}i∈I = Span{uj}j∈⋃i∈I Ji
So that |I| 6 |J |. By symmetry, however, we conclude that |J | 6 |I|

as well, and again we may employ the Bernstein Schröder theorem or

cardinal arithmetic to see that |I| = |J |.

23. Exercise 1.4.23

If the dimension is countable, our space H is trivially separable by

restricting to the rational coefficients. Suppose now that H is separa-

ble. There exists some orthonormal basis {ei}i∈I . Suppose for sake of

contradiction that I is uncountable. Then,

||ei − ej||2 = ||ei||2 + ||ej||2 = 2

=⇒ ||ei − ej|| =
√

2 for i 6= j

Consider B(ei, 1/2). Enumerate our dense set as {αn}∞n=1. For every

i, there is at least one unique n such that αn ∈ B(ei, 1/2), by density.

Hence, there is a surjection from N → I. But this forces I to be

countable, as desired.
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24. Exercise 1.4.23

The map ⊗ is the standard tensor product definition. That is, give

H ×H ′ the product space, then modulo the subspaces generated by

(rh, h′)− (h, rh′), (h1 + h2, h
′)− (h1, h

′)− (h2, h)

and so on, and then take the completion.

(i). Linearity is trivial.

(ii). We have basis elements {ei ⊗ e′j}i,j. Define

〈ej ⊗ e′i, ej′ ⊗ ei′〉H⊗H′ := 〈ej, ej′〉H〈e′i, e′i′〉H′

Extending by linearity yields

〈x⊗ x′, y ⊗ y′〉H⊗H′ := 〈x, y〉H〈x′, y′〉H′

(iii). Let x ⊗ x′ ∈ H ⊗H ′. Then, x ⊗ x′ is the limit of some Cauchy

sequence {xn ⊗ x′n}. Hence, for all ε > 0 there exists N ∈ N such that

||x⊗ x′ − xn ⊗ x′n|| = ||x− xn|| · ||x′ − x′n|| < ε

for n > N . Writing xn, x′n as finite linear combinations of elements in

H, H ′, respectively, the result follows.

(This can also be done via the indirect identification that a simple

tensor x1⊗ x2 is such that x1⊗ x2(x∗) = x∗(x1)x2 for x∗ ∈ H∗, so that

x1 ⊗ x2 : H∗1 → H2, x1 ⊗ x2 : H∗2 → H1

Depending on which dual space your functional belongs to.



20 KELLER VANDEBOGERT

25. Exercise 1.4.25

It suffices to show that {ψn ⊗ φm}m,n∈N is a maximal orthonormal

basis of

L2(X × Y,X × Y , µ× ν)

when {ψn}n∈N and {φm}m∈N are maximal orthonormal bases of L2(X,X , µ)

and L2(Y,Y , ν), respectively. Suppose f(x, y) is orthogonal to every el-

ement of {ψn ⊗ φm}m,n∈N. Then, we seeˆ
X×Y

f(x, y)ψn ⊗ φm(x, y)dµ× η(x, y)

=

ˆ
X

( ˆ
Y

f(x, y)φm(y)dν(y)
)
ψn(x)dµ(x) = 0

=⇒
ˆ
Y

f(x, y)φm(y)dν(y) = 0 (ψn maximal)

=⇒ f(x, y) = 0 (φm maximal)

So {ψn ⊗ φm}m,n∈N is a maximal orthonormal basis. We also see:

〈f ⊗ f ′, g ⊗ g′〉L2(X×Y,X×Y,µ×ν)

=

ˆ
X×Y

f(x)f ′(y)g(x)g′(y)dµ× ν

=

ˆ
X

f(x)g(x)dµ

ˆ
Y

f ′(y)g′(y)dν

= 〈f, g〉L2(X,X ,µ) · 〈f ′, g′〉L2(Y,Y,ν)

= 〈f ⊗ f ′, g ⊗ g′〉L2(X,X ,µ)⊗L2(Y,Y,ν)

Whence the result.


