TERENCE TAO’S AN EPSILON OF ROOM”
CHAPTER 4 EXERCISES

KELLER VANDEBOGERT

1. EXERCISE 1.4.1

Assume first that (Tx, Ty) = (z,y). Then,
1T2|* = [|l2]]* = ||T=]| = [|]]

So T' is an isometry.
Conversely, suppose that T is an isometry. In the complex case,

employ the polarization identities to see

1 : : . :
(T, Ty) = 7 (1 T+ Tyl? = | Tw = Tyl +il| Tz +iTyl[* = il[Tw - iTy||*)

1 . . . .
= (Il + ol = llz = ol + il + iyl = il = — i)
= (z,y)
So that (T'z, Ty) = (x,y). In the real case, the polarization identities

are even simpler:
(T2, Ty) = 5 (1 T+ Ty|? — Tz — Ty|?)

(Il + 92 = lle = yI?)

Which gives the result.
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2. EXERCISE 1.4.2

Note that
(@i 2)) = ((x7,22))
= ({zi, 7))
So this matrix is Hermitian. Let X := (27 x5 ... z,), the z; are our

column vectors. It is trivial that

t

XX = ((zi,2;))

which is our Gram matrix. For any nonzero v, Xv # 0 whenever the

x; are linearly independent. Thus,
X Xv = X0 Xv
= (Xv, Xv)
= [|Xv|[* >0
If we suppose that x; are linearly dependent, then X has nontrivial

kernel. Choose v € Ker X, so that
X Xv = X0 Xv=0

So the matrix is positive semidefinite.

3. EXERCISE 1.4.3

By induction, with base case n = 2:
|21+ @o|* = ||21][* + 2Re (w1, 22) + | |22
= [z [* + [fa2|[*
Now assume n > 2, where the inductive hypothesis holds for all integers

less than n. It is obvious that if our vectors x; are orthogonal, in



TERENCE TAO’S ”AN EPSILON OF ROOM” CHAPTER 4 EXERCISES 3

particular, x,, and x; + - - - + x,,_1 are orthogonal. Using this:

|21 + 2o+ Ty F x| = ||o + -+ 2P+ 2Re(@y + -+ 2, 1) F |2
= |z + - + 2|+ ||zl

= || PP + [|2]|* + - - + [|zal®
Whence the result.

4. EXERCISE 1.4.4

Let {eq }aca denote our orthonormal basis. Suppose we have a linear

combination with constants ¢, such that
cr1+...cpxy, =0

Taking the inner product in the above with each e;, we immediately
deduce that ¢; = 0 for all 7, so this set is linearly independent. Given

any x, there exist constants ¢; such that

n

Tr = E C;€;

i=1

Again, taking the inner product in the above with each of the e;, we

find that
<.I', €i> =C

Implying

n

r = Z(w,ei>ei

i=1
as asserted.

5. PROBLEM 1.4.5

Assume (z;)!; is orthonormal. Set

n
Tpg1 =0 — Z(v, ;)T
i=1
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Clearly x4, € Span{zy,...,z,,v}, so that
Span{zy,...,x,, v} = Span{xy, ..., Ty, Tpi1}

And we also see for each j < n,

n

(Tnt1,m5) = (v, 25) — ' (v, x3) (i, T5)
= <U’xj> - <U7xj> =0

So we have produced a larger orthonormal set (upon normalizing x,,.
as needed). Hence given any basis {b1,...,b,}, we can produce an
orthonormal basis {x1, ..., z,} by setting b; = z;, and then inductively

defining our x; by the above process. By construction,

Span{by,...,b,} = Span{zy,...,x,}

So this is indeed a basis.

6. EXERCISE 1.4.6

For the parallelogram law,
llz +yl1* + [z = ylI* = [l]|* + 202, y) + [[yl]* + [J2]]* = 2{z, y) + ||y|]
= 2||=[|* + 2/ [ylI*
Suppose now that p # 2. Choose disjoint measurable sets Ej, Fs.
Then,

2
e + Xl + e — xmll2 = 2(p(Er) + p(Es))*”

# 2u(E1)*? + 2u( Ep)*”

= 2l + e 2”
So the parallelogram law does not hold for p # 2. Now, in order to prove
the Hanner inequalities, we may assume without loss of generality that

|f|l, =1 and ||g||, < 1 by homogeneity. Using the inequality supplied
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by the hint, we may assume f, g > 0 by splitting into positive/negative

parts of course. We see:
F+gP+1f =gl > (gl + (= llglly) ) - 2

+ (@ llgllp) = (1= Nlgllp)™") - gl 7

Integrating the above yields
17+ gl + 11 = gl > (1 + gl + (1= llgll,) ")
+ (A llgll) ™ = (1= llgllpy)

= (L +lgllp)” + (1 = [lgllp)?
Which establishes the first inequality. For the second inequality, we

lgllp

want to employ the above. Putting f — f + g, g — f — g, the first
inequality yields

p
(115 + gllo + 117 = glly) "+ (1L + glly = 117 = gllo|* < 112411+ 11 = 29113

=2 (|If112+ llgll?)
Which yields the result.

7. EXERCISE 1.4.7

A subspace of a Hilbert space is a Hilbert space if and only if it
contains all of its limit points, since the rest of the structure is inherited
by the ambient space. But a subspace is closed if and only if it contains

all of its limit points, so the result follows trivially.

8. EXERCISE 1.4.8

We define the completion by the union of V' with all limits of Cauchy
sequences in V. By continuity of inner products, it is well defined to

set

(x,y) := lim(x,,yn), Tp =T, Yo =Y
—00

n
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This space is trivially complete by construction, so we are done.

9. EXERCISE 1.4.9

The vector space structure and completeness are both obvious.

remains only to show the inner product properties. One sees:

((z,2"), (W, ¥ )Y o = (@, y)u + (&' y )

= <y7x>H + <$/>y/>H’

= <($, :L“’), (y, ?/))HEBH’

Conjugate linearity and linearity are trivial. Also,
((@,2), (z,2") non = (v, x)n + (&, 2 )
= |l=llz + ll2/II7
=0 <= z,2 =0
— (2,2)=0

Which proves nondegeneracy.

10. EXERCISE 1.4.10

It

Consider B := {z : ||z|| < 1} in R?. Then, no point outside of B has

a minimizer, and B is open. Now consider

Bi={a|llzll <1}, Boi={e|lle - (4,0)] <1}

Then B; U By is closed but not convex. Consider then the point (2,0).

The minimum distance from B; U By is 1, achieved by the points (1, 0)

and (3,0), so these minimizers are not unique.

For the case of a pre-Hilbert space, consider C([0,1]) C L?([0,1]).

Set K to be the continuous functions supported on [0, 1/2], and consider

the distance of xjo1; from K. It is easy to see that d(xp1, K) = \%,
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and is achieved by the sequence of functions

M/n * X[0,1/2]

As n — oo, where 7. denotes the standard mollifier and * the operation
of convolution. Noting that [0,1/2] is a compact set, 11/, * X[0,1/2] —
X[0,1/2] uniformly, but this limit is not contained in C'([0, 1]).

Suppose now that K is compact, and define D := inf cx ||z — y||.
Choose a sequence y,, such that lim,,_,, ||z—y,|| = D. By compactness,
Y, has a convergent subsequence y,, — y. Since K is closed, y € K,

so the minimizer exists.

11. EXERCISE 1.4.11

The case p = 2 is already solved. Suppose first that p > 2. Choosing
a sequence ¥y, such that ||y, — z|| — D, Hanner’s inequality yields

(yn € K, K closed/compact):

Yn + Ym P
12(2 = L2 1 4 g — gl < (1 = 2llp + llgm — 21l

p
+ (1o = @l = llgm — 11y
Letting m, n — oo, we see:

tim_lyy — il [} S 2D + (D — DY — 2D
=0
So that our sequence is Cauchy, hence convergent to some limit y,, —
ye K.
Now consider the case p € (1,2). Hanner’s inequalities are reversed

in this case, and without loss of generality we may assume that x = 0.

Again, choose y,, such that ||y,||, — D, our minimizing distance. We
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see:

p p
(119 + nllp + llya = wmlly) "+ (Ul + vl = 30 = winlly)

< 2°(1lyallf + 1yl
By convexity of K, ||yn~+Yyml||, = 2D. Suppose for sake of contradiction
that there exists from e > 0 such that ||y, — ym|[, — € Letting

m, n — 00, the above inequality gives
12D + €|’ 4+ |2D — €|? < 2PDP + 2P DP

However, if f(z) := |2D + z|P, f is strictly convex, since p > 1. But

the above says that

1 1

5/(€) + 5 /(=€) < f(0)

2 2
whereas the reverse inequality holds by convexity of f. Hence, we
deduce

1)+ 5 7(—e) = 1(0)

o\ T AT =
By strict convexity, this is possible if and only if € = 0. Hence, y,
is Cauchy and must converge to some minimizer y, — y € K. This

completes the proof.

12. EXERCISE 1.4.12

Let {z1,...,2,} be an orthonormal basis of V. Define zy := > (z, z;)z;.
Setting xy1 := x — xy, we see that
(xyi,x;) = (x,2;) — (zy, 25)
= (z,z;) — (x,2;) =0
So that . is orthogonal to every element of V. To see that xy
minimizes distances, notice that for any y € V:
r—y=r—xy t+rv—yY

= o=yl = llz — vl +ly — 2v|* > |lo — 2v]]”
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So that xy is indeed our minimizer.

13. EXERCISE 1.4.13

(a). Note first that (-,v) is a continuous functional. This follows by
the Cauchy=Schwarz inequality. Hence,
vE= ()£ ({0})
veV
where f,(x) := (v, z). By continuity, £, 1({0}) is closed, and V= is the
intersection of closed sets, hence closed.

We proceed to show V = (VL)L. Since V' C (VL)L, we trivially
have that V C (VL)L.

For the reverse inclusion, suppose for sake of contradiction that the
above containment is proper. Since V is closed, V" is nontrivial.
Choose v € VL, and observe that V' C V* (since V C V).

But this implies that v € V+, and v € (VL)L, SO

vevin(vh)t = {0}
— v=0
Contradicting our assumption. We conclude that V = (VL)l.
(b). If VX = {0}, then by part (a), V = (VL)L = H, so that V is
dense.

Conversely, if V is dense, V = H = V= {0}. But it is obvious
that V" = VL = V' since V' is closed. Therefore V1 = {0}.

(c¢). By Exercise 1.4.12, we can decompose x = zy+xy 1. Then, clearly

H=V+VL AsVNV+={0}, we conclude that H =V & V=,
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(d). Let x € (V + W)L, Then, (v+w,z) =0forallv eV, weW.
Setting v = 0, we see (w, x) = 0 for all w € W, and similarly, (v, z) = 0
for all v € V, so that x € V- N W=,

Conversely, if z € V- N W+, then forallv € V, w e W,
(v +w,2) = (0,5) + (w,z) = 0

Soxe (V+W):

Now, recalling that V= V4, and likewise for W, we see
VE+WHE=VnWw
— VIAWhH) =V AW =vinwt

Whence the result.

14. EXERCISE 1.4.14

Set K = Ker(\). This is closed by continuity and trivially convex.
If A = 0, the result is obvious, so suppose A # 0 and choose [ ¢ K.
We can find h € K such that || f — hl||, is minimized by Exercise 1.4.11.
Set u:= |f — h|P"2(f —g). For any k € K, we have that

Re(/}(uk‘dp) <0

However, by linearity, k € K = —k, 1k € K, so we can substitute
those in the above inequality to find that [ « Ukdp = 0 precisely. We

also see

]l = /X (If — BT - )T du

= [ 17 = nlra

= [lf = hlly < o0
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Thus u € L” , since f, h € LP. Let g € LP. Now, decompose ¢ = g1+ o

where

g = %(f—h), 92 =9—0

Note that
A(g2) = Ag) = Alg) =0

This implies that go € K, so that we see

/ gudp = / grudp
X X

A9) o+
= L —h)|f — hP2f —h)d
S [ =l = hE =Ry
Ag)
= = _hpd
A(f)/le Py
— hllp
:A(g)HfA(f)Hp
Since f ¢ K, we know ||f — h[|, # 0, so we may define ¢ := wA)

1f=hllp
Then ¢ € L¥ | and, by construction,

A=),

Which proves the result.

15. EXERCISE 1.4.15

Let {eq,...} denote our orthonormal basis. Define A(z) := (T'z, ¢;).

We see that
A@)] < |[T]] - |[=]]

So A is bounded, hence continuous. By the Riesz Representation the-

orem, there exist v; € H such that

M) = (, v:)
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Define T*e; := v; and extend by linearity. This uniquely defines an

operator T : H' — H. Note that
(z,T"y) = (Tw,y) < ||T|| - [|y]]
So that 7™ is continuous. For linearity,
(x, T*(cy+ 2)) = (Tx,cy + 2)
=c(x, T"y) + (x,T"z)
= (z,cI"y+T"2)

Completing the proof.

16. EXERCISE 1.4.16

(a). Note that for z € H, y € H’,
(Tz,y) = (z,T"y)

As z and y are arbitrary, we see that T' = T™*.

(b). Recall that T' is an isometry if and only if (T'z, Ty) = (z,y). By

definition of adjoint,
(T'x, Ty) = (z, T"Ty)

and we conclude that T is an isometry if and only if y = T*T'y for all

y, that is T*T = idy.

(c¢). Suppose first that T*T = idy, TT* = idg,. Then T is a right
invertible isometry, hence an isomorphism.
Conversely, let T' be an isomorphism. Then T is an isometry, so by

the previous part, T*T = idy. By surjectivity, for any 2’ € H’, we can
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find x € H such that Tx = 2’. Given 2/, v/ € H':
(@', y) = (Tz,y)
= (z, T"y)
= (Tx, TT*y)
= (", TT"y)

From which we conclude that TT* = idy/, as asserted.

(d). One one hand, we see
(TSx,y) = (z,(TS)"y)

On the other,
(T'Sz,y) = (Sz,T"y)
= (z,S"T"y)
So that (T°S)* = S*T™.

17. EXERCISE 1.4.17

Recall that any € H can be uniquely written as z = xy + xy1.
Then, one notes that m (z) = zy. Hence,

(mv(2),y) = (2v,y)

= (zy +zyL,y) = (2,9)

So that the adjoint of 7y, is precisely the inclusion.

18. EXERCISE 1.4.18

(i). Note first that
N N

I Z Cnén|| converges <= || Z Cnén||? converges
i=1 i=1

N N
| chenH2 = Z |eal?
=1 =1

But
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Letting N — oo, we see that Y .o, |¢,|* must converge.

(ii). Let € > 0. There exists N such that > .°7 \ [c,|? < € for all
N'>N. Let § = 3

n_1 Ca(n)€o(n) be a rearrangement of our sum, and

set M := max{o(1),...,0(N)}. Then, using part (i), we see that for
all M' > M:

Ml
||S - Z Ca(m)ea(m) - || Z CU(m)ea(m)H
m=1

m>M'

1/2
= ( > |Co<m)|2>

m>=M'

<(Xre)”

n>N

Hence, 220:1 Co(n)€o(n) converges to the same value.
(iii). We see that, given (a,), (b,) € (*(N):

5 anena§ b en = anenabnen>
n=1

= f: ana<en7 6n>

8

(iv). As already shown, the adjoint of the inclusion is just m. Let

x € H. Then,

% 0
<.T, Z Cnen> = Z Cn<x7 €n>
n=1 n=1

o0

cn{x,en){en, en)

(x,en)en, E Cn€n)
1

n=1

8

n=
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So that

o0

v (x) = Z(m, €n)en

n=1

From part (i), we easily see that

I @I = Zmen
— @l = (3l e )

And, as ||y (2)|] < ||z|] (by orthogonal decomposition), we see

ZI z,en)|* < [l

Which completes the proof.

19. EXERCISE 1.4.19

(1) = (ii): Suppose (eq)aca gives all of H. Then, given ¢ > 0 and
x € H, we can find N € N such that

N

||x—chen|| <€

n=1

Implying that finite linear combinations are dense.
(11) = (i7i): By Bessel’s inequality,

Dl ea) P <l

acA

Note, however, that if V' denotes our space of finite linear combinations,
V =H = V' ={0}. Every vector can be decomposed as x =
ry + xy1, where xy L xy1. However, this implies that zy. = 0, so

that

]l = llevll = ) e ea)? =[]

a€A
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(1it) = (iv): We see that the (z,e,) are square summable. By
Exercise 1.4.18, part (i),

Z(m,ea>ea

a€A

converges unconditionally to x.
(iv) = (v): Suppose that x = Y (¥, eq)eq for all z € H. If
(v,eq) =0 for all @ € A, then

(z,v)=0forallz € H <= v=0

(v) = (vi): The isomorphism ¢?(A) — H is precisely the identifi-

cation

(Ca)aeA — Z CaCa

a€cA

This has already been shown as an isometry, so it merely remains to
prove surjectivity. Letting V' denote our formal span, we have that
V4 = {0} so that V = H. But V is a closed set, so in fact V = H.
One immediately notes that V' is precisely the image of our isometry,
so surjectivity follows immediately.

(vi) = (i): Let T denote our isomorphism. Givne x € H, z is
the image of some (cy)aca € 2(A). If the §, denote our standard unit

basis vectors, we may rewrite

(Ca)aca = Z Ca(0a)aca

acA

= T(Co)aca = Z Ca€o (Linearity)
acA

But, T'(¢,) = z, so that in fact,

T = E Calo

a€cA

Which shows that our Hilbert space span is all of H.
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20. EXERCISE 1.4.20

If V is empty, we are done. Assume V # &. Every singleton set
is linearly independent, so order the family of linearly independent
sets by inclusion. Given any chain S; C Sy C ..., we have the trivial
upper bound (J, ., Sx. Applying Zorn’s Lemma, there exists a maximal
linearly independent subset S. It remains to show that Span(S) = V.

Suppose then that Span(S) # V. We can choose v € V\Span(5),
which implies that the set S U {v} is a linearly independent set that
strictly contains S. This contradicts maximality of S, so we conclude

that

Span(S) =V

21. EXERCISE 1.4.21

We can assume that A and B are infinite, since the finite case uses
the exact same technique without employing the Bernstein Schoder
theorem. Let {vy}aca and {ug}sep be bases for (2(A) and ¢*(B),
respectively. Then, for each o € A, there exists a finite subset B, C B
such that Tv, € Span{ug}sep,. This gives that

Span{Tv, }aca C Span{ug}seyy, _, Ba

So that |A| < |B|. However, the same argument applied to {7 ug}sep
shows that |B| < |A|. Applying the Bernstein Schréder theorem, we
conclude that |A| = |B|.

The converse is trivial, as we merely relabel our indices based off of

the provided bijection f: A — B.
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22. EXERCISE 1.4.22

Every basis of a vector space must have the same cardinality, since
one can see that if Span(A) = Span(B) for two linearly independent
sets A, B, that |A| = |B|.

To see this, let {v;}ier , {©;}jes be two bases. For each 4, there is a

finite subset J; C J; such that
v; € Span{u;}jes
Then, we see
Span{v; }ic; = Span{u;}jey,,

So that |I] < |J|. By symmetry, however, we conclude that |J| < ||
as well, and again we may employ the Bernstein Schroder theorem or

cardinal arithmetic to see that || = |J].

23. EXERCISE 1.4.23

If the dimension is countable, our space H is trivially separable by
restricting to the rational coefficients. Suppose now that H is separa-
ble. There exists some orthonormal basis {e; };,c;. Suppose for sake of

contradiction that I is uncountable. Then,
llei = ejl1* = [lesl|* + lleyl|* = 2
—> e — ]| = V2 for i # j
Consider B(e;, 1/2). Enumerate our dense set as {a,}52,. For every
i, there is at least one unique n such that «,, € B(e;,1/2), by density.

Hence, there is a surjection from N — [. But this forces I to be

countable, as desired.
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24. EXERCISE 1.4.23

The map ® is the standard tensor product definition. That is, give
H x H' the product space, then modulo the subspaces generated by

(rh, b’y — (h,rh’), (hy + ha, h') — (h1, h') — (ho, h)

and so on, and then take the completion.

(i). Linearity is trivial.

(ii). We have basis elements {e; ® €/ }; ;. Define

(ej @ €}, ey @ ei)nan = (ej,¢j) ue;, i)

Extending by linearity yields

(@ 2",y @Y non = (@, y)u(@’, ¥y )

(i1i). Let t ® ' € H® H'. Then, z ® 2’ is the limit of some Cauchy
sequence {z, ® x, }. Hence, for all € > 0 there exists N € N such that

2@ 2" —xp @ @[] = [lo — || - |2 — 2, || <€

for n > N. Writing z,,, 2/, as finite linear combinations of elements in
H, H', respectively, the result follows.
(This can also be done via the indirect identification that a simple

tensor x7 ® x5 is such that z1 ® zo(2*) = 2*(z1)zy for * € H*, so that
$1®$21HT—)H2, I1®IL‘21H;—>H1

Depending on which dual space your functional belongs to.
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25. EXERCISE 1.4.25

It suffices to show that {¢,, ® ¢ }mnen is a maximal orthonormal
basis of
LA(X XY, X xY,uxv)
when {1, }new and {@,, }men are maximal orthonormal bases of L?( X, X, 1)
and L*(Y, Y, v), respectively. Suppose f(x,y) is orthogonal to every el-

ement of {¢,, ® ¢, }mnen. Then, we see

f(@,y)n @ (2, y)dp x n(z,y)

XXY

= /X (/Yf(CC,y)‘b_m(y)dy(y))%(x)du(x) —0
= /Yf(w,y)¢_m(y)dv(y) =0 (¢, maximal)

= f(z,y) =0 (¢, maximal)
S0 {n, @ ¢ fmnen 18 @ maximal orthonormal basis. We also see:

<f ® f/7 g ® gl>L2(X><Y,X><)),,u><1/)
= f(@)f' (y)g(x)g' (y)dp x v

- [ f@at@an | £ waTa
= (f, Q) 2xxm (O )2y

= <f ® f/, g g,>L2(X,X,u)®L2(Y,y,u)
Whence the result.



